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ABSTRACT
This study presents a novel approach to automatic detection
and segmentation of the Crown Rump Length (CRL) and
Nuchal Translucency (NT), two essential measurements in
the first trimester US scan. The proposed method automat-
ically localises a standard plane within a video clip as de-
fined by the UK Fetal Abnormality Screening Programme. A
Nested Hourglass (NHG) based network performs semantic
pixel-wise segmentation to extract NT and CRL structures.
Our results show that the NHG network is faster (19.52% <
GFlops than FCN32) and offers high pixel agreement (mean-
IoU=80.74) with expert manual annotations.

Index Terms— First trimester, video segmentation,
crown rump length (CRL), ultrasound, nuchal translucency
(NT).

1. INTRODUCTION

Fetal ultrasound (US) is a non-invasive imaging method for
assessing fetal growth and development. The prenatal first
trimester US scan is carried out at 11+0 to 13+6 weeks ges-
tation to evaluate fetal viability, pregnancy dating and assess
the risk for chromosomal anomalies [1]. To accomplish these
tasks, current clinical approaches rely on manual selection of
the mid-sagittal plane with a measurement of the fetal Nuchal
Translucency (NT) and Crown-Rump Length (CRL), which
is subjective and requires extensive training and years of ex-
perience [2, 3].

Contribution. We present a two-stage deep learning
architecture that automatically detects the mid-sagittal plane
(MSP) and segments the key CRL and NT structures as shown
in Fig. 1. As a pre-processing step, a real-time detection CNN
predicts the class probabilities of key anatomical structures
(nose, head, horizontal sagittal section, diencephalon and
rump) to detect the best MSP view. Stage two is a novel
nested encoder-decoder semantic segmentation architecture
designed to segment the CRL and NT structures. The pro-
posed design aims to ensure that the various levels of US

image features extracted from the encoder are delivered to
the decoder to discriminate more subtle anatomical structures
at the cost of fewer trainable parameters (32.5% fewer than
U-Net [4]). A class balancing based weighted loss function
was employed to further improve the segmentation, which is
reflected by an increase of 4.27% in the mean intersection-
over-union (IoU) score.

Related Work. There are a limited number of studies on
automated fetal biometry for the first-trimester US. Zhao et al.
[5] presented a linear support vector machine (SVM)-based
study to detect physical characteristics that ultimately help
to detect Down Syndrome. Nirmala et al. [6] proposed NT
detection method based on segmentation and edge detection.
The authors utilized a shift procedure that clusters the fea-
tures of pixels in an iterative way to get the segmentation
mask of NT. More recently, Sobhaninia et al. [7] proposed
a neural network-based multi-task fetal head circumference
segmentation method for fetal biometry. However, none of
the aforementioned methods considered the combined task of
detecting a standard plane and segmentation of key anatomi-
cal structures from US video.

2. METHODS

2.1. Data Acquisition

The dataset of 250 full-length routine first-trimester free-
hand fetal US scans containing midline sagittal view of
fetus acquired under a large-scale study PULSE (Percep-
tion Ultrasound by Learning Sonographer Experience) at
Fetal Medicine Unit, Oxford University Hospitals National
Health Services (NHS) Foundation Trust. The scans were per-
formed on a commercial Voluson E8 version BT18 (General
Electric Healthcare, Zipf, Austria) US machine. The setup
was equipped with customized video recording software
through secondary video output of the ultrasound machine
to record full-length video scans using screengrab [8]. The
video data was saved by anonymizing the patient details.
The full-length US scans were recorded with HD resolution
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Table 1: Details of datasets and tasks used in this study.

Anatomy Task Datasets Video Segments Frames

C
R

L

Training 100 12534 (77.9%)

SPD and SPS Validation 18 2385 (14.8%)

Test 10 1174 (7.2%)

N
T

Training 110 10174 (79.3%)

SPS Validation 27 2083 (16.2%)

Test 9 564 (4.4%)

(1920 × 1080 pixels) at 30 frames per second and lossless
compression. The average duration of acquired first-trimester
US scans is 13.73 ± 4.18 minutes (24720 ± 7534 frames).
Figure 2 shows an illustrative example of how an US scan
was partitioned into video clips by an expert.

2.2. The Proposed Architecture

Figure 1 presents an overview of the proposed architecture.
US frames are input to a pre-processing CNN to detect the
best MSP. Next, the selected keyframes are fed into the pro-
posed NHG with a weighted loss function for the segmenta-
tion of CRL and NT. The final predictions are refined using a
dense Conditional Random Field (dCRF) model.

2.2.1. Sagittal Plane Detection (SPD)

For the sagittal plane detection (SPD) task, Table 1 sum-
marises the CRL dataset manually annotated by an engi-
neering researcher and a clinical fellow for five anatomical
structures; a) head [Hd], b) horizontal sagittal section of the
fetus [HS], c) echogenic tip of the nose [EN], d) rump [Ru],
and e) translucent diencephalon [TD]. We applied Yolo-
v5 [9] for high-speed (more than 30 frames per second (fps))
US anatomical object detection posed as a regression and
classification problem; it returns class label and associated
probabilities. The best MSP is detected when all anatom-
ical classes are detected with a probability higher than >
70%. This threshold was selected after several experiments
to ensure the presence of all key anatomical classes must
be present as suggested by NHS Fetal Anomaly Screening
Programme (FASP) guidelines [1].

2.2.2. Sagittal Plane Segmentation (SPS)

For sagittal plane segmentation (SPS), we designed a NHG
network architecture that sandwiches a single Hourglass (HG)
[10] between residual blocks [11], as shown in Fig. 3. The
proposed architecture arranges the residual, pooling, and HG
blocks appropriately during the encoder stage, and likewise,
during the decoding stage to produce various levels of fea-
ture maps in the same block. This leads to a final segmen-
tation mask extracted with the help of encoder pooling in-

dices. During NHG network training, extreme foreground-
background class imbalance, especially classes such as NT,
was found to be problematic. To address this we introduced
a weighted-loss (WL) function that assigns weights to each
class inversely proportional to the median frequency in which
that class appears throughout the entire training set [12]. This
offers a more customized loss calculation strategy than the
general focal-loss approach [13]. This simple heuristic loss
calculation improves segmentation performance by optimiz-
ing the network convergence (by adding focus to foreground
pixels) without additional trainable parameters.
The proposed weighted loss WL is defined as:

WL =
αc

N

N∑
n=1

W∑
x=1

H∑
y=1

[
gnxy log

(
ĝnxy

)
+
(
1− gnxy

)
log

(
1− ĝnxy

)]
,

where, N is the number of feature maps, ĝnxy is the predicted
class, and gnxy is the ground truth. The weight of each class
αc is scaled by its frequency relative to the median frequency
of all classes, calculated as:

αc =
median freq

freq(c)
,

where, freq(c) is the frequency of class c pixels occurrences
divided by the number of pixels in any image containing that
class, and median freq is the median of these frequencies
over all classes [12]. A dCRF is used as a post-processing
step for smoothing and maximizing agreement between sim-
ilar neighbouring pixels of the predicted segmentation masks
at the inference stage.

3. EXPERIMENTS

3.1. Settings and Metrics

The pre-processing CNN (Yolo-v5 [9]) and NHG architec-
tures were trained for 200 epochs to detect the sagittal plane
and segment the CRL and NT. Training was initiated with a
0.1 learning rate (lr) and decreased by a factor of ×0.1 ev-
ery 30 epochs. The data augmentation policy included ro-
tation [−30◦, 30◦] and horizontal flipping. For evaluation of
the SPD model, Recall (R), Precision (P), F1-score (F1), and
Top-l accuracy (Top-1) metrics are reported. For evaluation
of SPS, Global Average Accuracy (GAA), Mean Accuracy
(MA), and Mean Intersection Over Union (mIoU) metrics are
reported.

3.2. Evaluation of Sagittal Plane Detection

For the SPD task, we evaluated Yolo-v5 on the test set. The
trained Yolo-v5 model statistics are P=0.88±0.05, R=0.85±
0.03, F1=0.85± 0.10 and Top-1=0.87± 0.06. To further un-
derstand detection performance, we report the confusion ma-
trix in Fig. 5. ’Hd’ and ’HS’ show little class confusion. ’EN’,
’Ru’ and ’TD’ classes show some inter-class confusion.
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Fig. 1: An overview of the proposed architecture for automated fetal biometry in first-trimester US scans.

Table 2: Quantitative analysis of trained models on test dataset.

Methods Para.(M) CRL NT
GAA(%) MA(%) mIoU(%) GAA(%) MA(%) mIoU(%)

FCN-16 [14] 134.27 79.05± 0.05 66.23± 0.10 54.48± 0.20 82.64± 0.21 55.11± 0.03 51.60± 0.15

FCN-32 [14] 144 81.68± 0.01 76.56± 0.02 63.87± 0.18 85.02± 0.14 56.97± 0.01 51.80± 0.11

U-Net [4] 30.72 83.64± 0.08 79.80± 0.07 67.41± 0.25 90.17± 0.02 60.41± 0.01 58.39± 0.01

SegNet [15] 15.27 85.08± 0.10 83.82± 0.10 70.05± 0.33 89.66± 0.31 56.61± 0.24 48.18± 0.24

HG (B=1, S=2) [10] 35.08 89.05± 0.09 82.70± 0.20 70.83± 0.05 94.22± 0.01 64.10± 0.01 63.10± 0.05

NHG (ours) 11.46 92.32± 0.03 85.01± 0.01 74.42± 0.04 92.49± 0.05 66.37± 0.11 67.37± 0.01

Fig. 2: Illustration of expert annotation process: video frames are anno-
tated as Frozen (FF) video segments (blue), measurements (technical annota-
tion) segment (green) and fine-tune segment (red). A three-second pre-frozen
(fine-tune) state was added to incorporate a wide variety of anatomical views.

Fig. 3: Nested Hourglass (NHG) deep learning architectures.

3.3. Evaluation of Sagittal Plane Segmentation

For the SPS task, we trained and tested benchmark CNNs
(FCN [14], UNet [4], SegNet [15] and Hourglass [10]) which
were selected due to their high benchmark segmentation per-
formance on the public computer vision datasets. Experimen-
tal results are reported in Table 2. The results showed that
the proposed low compute design of the NHG network out-
performs other benchmark CNN architectures. NHG offered
3.07% higher GAA scores than the standard HG (block=1,

Table 3: Quantitative results of NHG for NT and CRL segmentation on test
dataset.

Architecture CRL-Mean IoU NT-Mean IoU mean
NHG-Focal-Loss 76.14± 0.01 69.51± 0.05 72.82± 0.05

NHG-Focal-Loss-dCRF 76.92± 0.21 71.01± 0.22 73.96± 0.13

NHG-Weighted-Loss 78.69± 0.27 72.89± 0.20 75.79± 0.01

NHG-Weighted-Loss+dCRF 80.02± 0.19 73.71± 0.02 76.86± 0.02

stack=2). The effectiveness of NHG-based segmentation can
be attributed to its layers arrangement, which offers repeated
bottom-up, top-down processing with intermediate supervi-
sion.

Addition of weighted loss reflects 0.87% increase in the
mIoU score, as shown in Table 3. These empirical results
showed that the proposed NHG network with weighted loss
performs consistently better than a class balancing (’focal
loss’) strategy based on standard cross-entropy. The quanti-
tative metrics indicate that the majority of pixels have been
classified correctly, depicted in Fig. 4. Figure 4-f shows that
class balancing and dCRF yield considerable improvements
by maximising agreement and smoothing between similar
neighbouring pixels. These methods helped improve the seg-
mentation of conflicting regions of pixels where the image
was cluttered. However, in segmentation classes such as
’NT’, the GAA score is higher, whereas the mIoU score
is lower in comparison to the ’CRL’ class, which certainly
happens due to an imbalance between foreground and back-
ground classes. The dCRF also offers a well-defined separa-
tion between foreground and background pixels, specifically
in the NT class, which is reflected in increased mIoU= 1.07%
scores for each class. The test set automated semantic pixel-
wise segmentation showed a high correlation Pearson Corre-
lation Coefficient (PCC) value (ρ = 0.93, p = 0.0003) with
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Fig. 4: Example results: a) input video frame, b) ground truth mask, c) NHG output (no weighted loss), d) NHG output with additional weighted loss (WL)
function, e) NHG with additional post-processing with dCRF, f) NHG model with WL and dCRF, g) (f) overlaid on the input image.

Fig. 5: Confusion Matrix. Automatic v/s Manual Labeling.

manually segmented video.

4. CONCLUSION

We have presented a deep-learning based architecture that
takes an ultrasound video as an input and outputs key struc-
ture segmentations that are used for fetal biometry in first-
trimester US in one step. At the segmentation stage, our NHS
based network outperformed all benchmark architectures in
terms of accuracy, speed, and parameter efficiency. A good
correlation was found between manually labelled and auto-
matically segmented anatomical structures. The future work
will examine downstream automated biometry and transla-
tional issues in terms of algorithm evaluation and its appli-
cation in the clinical setting.
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